MDOF SYSTEMS WITH DAMPING

MDOF Systems with hysteretic damping- general case

Free vibration solution:
$[M]\{\ddot{x}\}+([K]+i[D])\{x\}=\{0\}$
Assume a solution in the form of:
$\{x\}=\{X\} e^{i \lambda t}$
Here λ can be a complex number. The solution here is like the undamped case. However, both eigenvalues and Eigenvector matrices are complex.
The eigensolution has the orthogonal properties as:
$[\Psi]^{T}[M][\Psi]=\left[m_{r}\right] ; \quad[\Psi]^{T}[K+i D][\Psi]=\left[k_{r}\right]$
The modal mass and stiffness parameters are complex.

MDOF Systems with hysteretic damping- general case

Again, the following relation is valid:

$$
\lambda_{r}^{2}=\frac{k_{r}}{m_{r}}=\omega_{r}^{2}\left(1+i \eta_{r}\right)
$$

A set of mass-normalized eigenvectors can be defined as:
$\{\phi\}_{r}=\left(m_{r}\right)^{-1 / 2}\{\psi\}_{r}$

What is the interpretation of complex mode shapes?
The phase angle in undamped is either 0 or 180. Here the phase angle may take any value.

Numerical Example with structural damping

$$
\begin{aligned}
& \mathrm{m} 1=0.5 \mathrm{Kg} \\
& \mathrm{~m} 2=1.0 \mathrm{Kg} \\
& \mathrm{~m} 3=1.5 \mathrm{Kg} \\
& \mathrm{k} 1=\mathrm{k} 2=\mathrm{k} 3=\mathrm{k} 4=\mathrm{k} 5=\mathrm{k} 6=1000 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Undamped

$$
[M]=\left[\begin{array}{ccc}
.5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1.5
\end{array}\right] \quad[K]=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Using command $[\mathrm{V}, \mathrm{D}]=$ eig (k, M) in MATLAB

$$
\left[\omega_{r}^{2}\right]=\left[\begin{array}{ccc}
950 & 0 & 0 \\
0 & 3352 & 0 \\
0 & 0 & 6698
\end{array}\right][\Phi]=\left[\begin{array}{ccc}
.464 & -.218 & -1.318 \\
.536 & -.782 & .318 \\
.635 & .493 & .142
\end{array}\right]
$$

Proportional Structural Damping

Assume proportional structural damping as:

$$
d_{j}=0.05 k_{j}, \quad j=1, \ldots, 6
$$

$$
\left[\lambda_{r}^{2}\right]=\left[\begin{array}{ccc}
950(1+.05 i) & 0 & 0 \\
0 & 3352(1+.05 i) & 0 \\
0 & 0 & 6698(1+.05 i)
\end{array}\right]
$$

$$
[\Phi]=\left[\begin{array}{ccc}
.464\left(0^{\circ}\right) & .218\left(180^{\circ}\right) & 1.318\left(180^{\circ}\right) \\
.536\left(0^{\circ}\right) & .782\left(180^{\circ}\right) & .318\left(0^{\circ}\right) \\
.635\left(0^{\circ}\right) & .493\left(0^{\circ}\right) & .142\left(0^{\circ}\right)
\end{array}\right]
$$

Non-Proportional Structural Damping

Assume non-proportional structural damping as:

$$
d_{1}=0.3 k_{1}
$$

$$
d_{j}=0, \quad j=2, \ldots, 6
$$

$$
\begin{gathered}
{\left[\lambda_{r}^{2}\right]=\left[\begin{array}{ccc}
957(1+.067 i) & 0 & 0 \\
0 & 3354(1+.042 i) & 0 \\
0 & 0 & 6690(1+.078 i)
\end{array}\right]} \\
{[\Phi]=\left[\begin{array}{ccr}
.463\left(-5.5^{\circ}\right) & .217\left(173^{\circ}\right) & 1.321\left(181^{\circ}\right) \\
.537\left(0^{\circ}\right) & .784\left(181^{\circ}\right) & .316\left(-6.7^{\circ}\right) \\
.636\left(0^{\circ}\right) & .492\left(-1.3^{\circ}\right) & .142\left(-3.1^{\circ}\right)
\end{array}\right]}
\end{gathered}
$$

Non-Proportional Structural Damping

Each mode has a different damping factor.

- All eigenvectors arguments for undamped and proportional damp cases are either 0 or 180.
- All eigenvectors arguments for non-proportional case are within 10 degree of 0 or 180 (the modes are almost real).

Exercise: Repeat the problem with
$\mathrm{m} 1=1 \mathrm{Kg}, \mathrm{m} 2=0.95 \mathrm{Kg}, \mathrm{m} 3=1.05 \mathrm{Kg}$
$k 1=k 2=k 3=k 4=k 5=k 6=1000 \mathrm{~N} / \mathrm{m}$

FRF Characteristics (Hysteretic damping)

Again, one can write:
$\left([K]+i[D]-\omega^{2}[M]\right)\{X\} e^{i \omega t}=\{F\} e^{i \omega t}$
The receptance matrix can be found as:
$H(\omega)=\left([K]+i[D]-\omega^{2}[M]\right)^{-1}=[\Phi]\left[\lambda_{r}^{2}-\omega^{2}\right][\Phi]^{T}$
FRF elements can be extracted:
$H_{j k}(\omega)=\sum_{r=1}^{N} \frac{\phi_{j r} \phi_{k r}}{\omega_{r}^{2}-\omega^{2}+i \eta_{r} \omega_{r}^{2}}$
or
$H_{j k}(\omega)=\sum_{r=1}^{N} \frac{{ }_{r} A_{j k}}{\omega_{r}^{2}-\omega^{2}+i \eta_{r} \omega_{r}^{2}}$

MDOF Systems with viscous damping- general case

The general equation of motion for this case can be written as:
$[M]\{\ddot{x}\}+[C]\{\dot{x}\}+[K]\{x\}=\{f\}$
Consider the zero excitation to determine the natural frequencies and mode shapes of the system:
$\{x\}=\{X\} e^{s t}$
This leads to:
$\left([M] s^{2}+[C] s+[K]\right)\{X\}=\{0\}$
This is a complex eigenproblem. In this case, there are 2 N eigenvalues but they are in complex conjugate pairs.

MDOF Systems with viscous damping- general case
$\left\{\begin{array}{l}s_{r}, s_{r}^{*} \\ \{\psi\}_{r},\{\psi\}_{r}^{*}\end{array}\right.$

$$
r=1, \ldots, N
$$

It is customary to express each eigenvalues as:
$s_{r}=\omega_{r}\left(-\zeta_{r}+i \sqrt{1-\zeta_{r}^{2}}\right)$
Next, consider the following equation:
$\left(s_{r}^{2}[M]+s_{r}[C]+[K]\right)\{\psi\}_{r}=\{0\}$
Then, pre-multiply by $\{\psi\}_{q}^{H} \quad$:
$\{\psi\}_{q}^{H}\left(s_{r}^{2}[M]+s_{r}[C]+[K]\right)\{\psi\}_{r}=\{0\}$

MDOF Systems with viscous damping- general case

A similar expression can be written for $\{\psi\}_{q}$:
$\left(s_{q}^{2}[M]+s_{q}[C]+[K]\right)\{\psi\}_{q}=\{0\}$
This can be transposed-conjugated and then multiply by $\{\psi\}_{r}$

$$
\{\psi\}_{q}^{H}\left(s_{q}^{2}[M]+s_{q}[C]+[K]\right)\{\psi\}_{r}=\{0\}
$$

Subtract equation * from ${ }^{* *}$, to get:

$$
\left(s_{r}^{2}-s_{q}^{2}\right)\{\psi\}_{q}^{H}[M]\{\psi\}_{r}+\left(s_{r}-s_{q}\right)\{\psi\}_{q}^{H}[C]\{\psi\}_{r}=\{0\}
$$

This leads to the first orthogonality equations:

$$
\begin{equation*}
\left(s_{r}+s_{q}\right)\{\psi\}_{q}^{H}[M]\{\psi\}_{r}+\{\psi\}_{q}^{H}[C]\{\psi\}_{r}=\{0\} \tag{1}
\end{equation*}
$$

MDOF Systems with viscous damping- general case

Next, multiply equation (*) by s_{q} and (**) by s_{r} :

$$
\begin{equation*}
s_{r} s_{q}\{\psi\}_{q}^{H}[M]\{\psi\}_{r}-\{\psi\}_{q}^{H}[K]\{\psi\}_{r}=\{0\} \tag{2}
\end{equation*}
$$

Equations (1) and (2) are the orthogonality conditions: If we use the fact that the modes are pair, then

$$
\begin{aligned}
& s_{q}=\omega_{r}\left(-\zeta_{r}-i \sqrt{1-\zeta_{r}^{2}}\right) \\
& \{\psi\}_{q}=\{\psi\}_{r}^{*}
\end{aligned}
$$

MDOF Systems with viscous damping- general case

Inserting these two into equations (1) and (2):
$2 \omega_{r} \zeta_{r}=\frac{\{\psi\}_{r}^{H}[C]\{\psi\}_{r}}{\{\psi\}_{r}^{H}[M]\{\psi\}_{r}}=\frac{c_{r}}{m_{r}}$
$\omega_{r}^{2}=\frac{\{\psi\}_{r}^{H}[K]\{\psi\}_{r}}{\{\psi\}_{r}^{H}[M]\{\psi\}_{r}}=\frac{k_{r}}{m_{r}}$
Where m_{r}, k_{r}, c_{r} are modal mass, stiffness and damping.

FRF Characteristics (visous oamping)

The response solution is:
$\{X\}=\left([K]+i \omega[C]-\omega^{2}[M]\right)^{-1}\{F\}$
We are seeking to a similar series expansion similar to the undamped case.
To do this, we define a new vector $\{u\}$:

$$
\{u\}=\left\{\begin{array}{l}
x \\
\dot{x}
\end{array}\right\}_{2 N \times 1}
$$

We write the equation of motion as:
$[C: M]_{N \times 2 N}\{\dot{u}\}_{2 N \times 1}+[K: 0]\{u\}=\{0\}_{N \times 1}$

FRF Characteristics (visous oamping)

This is N equations and 2 N unknowns. We add an identity Equation as:
$[M: 0]\{\dot{u}\}+[0:-M]\{u\}=\{0\}$
Now, we combine these two equations to get:

$$
\left[\begin{array}{cc}
C & M \\
M & 0
\end{array}\right]\{\dot{u}\}+\left[\begin{array}{cc}
K & 0 \\
0 & -M
\end{array}\right]\{u\}=\{0\}
$$

Which cab be simplified to:
$[A]\{\dot{u}\}+[B]\{u\}=\{0\}$

FRF Characteristics (visous oamping)

Equation (3) is in a standard eigenvalue form. Assuming a trial solution in the form of $\{u\}=\{U\} e^{s t}$

$$
\left(s_{r}[A]+[B]\right)\{\theta\}_{r}=\{0\} \quad r=1, \ldots, 2 N
$$

The orthogonality properties cab be stated as:
$[\theta]^{T}[A][\theta]=\left[a_{r}\right]$
$[\theta]^{T}[B][\theta]=\left[b_{r}\right]$
With the usual characteristics:

$$
s_{r}=\frac{b_{r}}{a_{r}} \quad r=1, \ldots, 2 N
$$

FRF Characteristics (visous oamping)

Let's express the forcing vector as:
$\{P\}_{2 N \times 1}=\left\{\begin{array}{l}F \\ 0\end{array}\right\}$
Now using the previous series expansion:
$\left\{\begin{array}{l}X \\ i \omega X\end{array}\right\}_{2 N \times 1}=\sum_{r=1}^{2 N} \frac{\{\theta\}_{r}^{T}\{P\}\{\theta\}_{r}}{a_{r}\left(i \omega-s_{r}\right)}$
And because the eigenvalues and vectors occur in complex conjugate pair:

$$
\left\{\begin{array}{l}
X \\
i \omega X
\end{array}\right\}_{2 N \times 1}=\sum_{r=1}^{N} \frac{\{\theta\}_{r}^{T}\{P\}\{\theta\}_{r}}{a_{r}\left(i \omega-s_{r}\right)}+\frac{\{\theta\}_{r}^{H}\{P\}\left\{\theta^{*}\right\}_{r}}{a_{r}^{*}\left(i \omega-s_{r}^{*}\right)}
$$

FRF Characteristics (visous oamping)

Now the receptance frequency response function $H_{j k}$
Resulting from a single force F_{k} and response parameter X_{j}

$$
H_{j k}(\omega)=\sum^{N} \frac{\theta_{j r} \theta_{k r}}{\sim}+\frac{\theta_{j r}^{*} \theta_{k r}^{*}}{*}
$$

or
$H_{j k}(\omega)=\sum_{r=1}^{N} \frac{{ }_{r} R_{j k}+i\left(\omega / \omega_{r}\right)\left({ }_{r} S_{j k}\right)}{\omega_{r}^{2}-\omega^{2}+2 i \omega \omega_{r} \zeta_{r}}$
Where:
$\left\{{ }_{r} R_{k}\right\}=2\left(\zeta_{r} \operatorname{Re}\left\{{ }_{r} G_{k}\right\}-\operatorname{Im}\left\{{ }_{r} G_{k}\right\} \sqrt{1-\zeta_{r}^{2}}\right)$
$\left\{{ }_{r} S_{k}\right\}=2 \operatorname{Re}\left\{{ }_{r} G_{k}\right\}$
$\left\{{ }_{r} G_{k}\right\}=\left(\theta_{k r} / a_{r}\right)\{\theta\}_{r}$

