
MDOF SYSTEMS WITH 
DAMPING 



MDOF Systems with hysteretic 
damping- general case 
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Free vibration solution: 

Assume a solution in the form of: 

tieXx }{}{ 
Here     can be a complex number. The solution here is like 
the undamped case. However, both eigenvalues and  
Eigenvector matrices are complex. 
The eigensolution has the orthogonal properties as: 
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The modal mass and stiffness parameters are complex. 



MDOF Systems with hysteretic 
damping- general case 
Again, the following relation is valid: 
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A set of mass-normalized eigenvectors can be defined as: 
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What is the interpretation of complex mode shapes? 
The phase angle in undamped is either 0 or 180. 
Here the phase angle may take any value. 



Numerical Example with 
structural damping 

m1 m3 

m2 

x1 

x2 

x3 

k1 k3 

k2 

k4 k5 

k6 

m1=0.5 Kg 
m2=1.0 Kg 
m3=1.5 Kg 
k1=k2=k3=k4=k5=k6=1000 N/m 
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Using command [V,D]=eig(k,M) in MATLAB 
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Proportional Structural Damping 

Assume proportional structural damping as: 
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Non-Proportional Structural 
Damping 
Assume non-proportional structural damping as: 
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Non-Proportional Structural 
Damping 

Each mode has a different damping factor. 

All eigenvectors arguments for undamped and 
proportional damp cases are either 0 or 180. 

All eigenvectors arguments for non-proportional case 
are within 10 degree of 0 or 180 (the modes are 
almost real). 

 

Exercise: Repeat the problem with 

m1=1Kg, m2=0.95 Kg, m3=1.05 Kg 

k1=k2=k3=k4=k5=k6=1000 N/m 



FRF Characteristics (Hysteretic Damping) 
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Again, one can write: 

The receptance matrix can be found as: 
T
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FRF elements can be extracted: 
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Modal Constant 



MDOF Systems with viscous 
damping- general case 
The general equation of motion for this case can be  
written as: 
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Consider the zero excitation to determine the natural  
frequencies and mode shapes of the system: 
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This leads to: 
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This is a complex eigenproblem. In this case, there are 
2N  eigenvalues but they are in complex conjugate pairs. 



MDOF Systems with viscous 
damping- general case 
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It is customary to express each eigenvalues as: 

)1( 2

rrrr is  

Next, consider the following equation: 
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Then, pre-multiply by           :   H
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MDOF Systems with viscous 
damping- general case 
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A similar expression can be written for         :   q}{

This can be transposed-conjugated  and then multiply by  r}{
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Subtract equation * from **, to get: 
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This leads to the first orthogonality equations: 
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MDOF Systems with viscous 
damping- general case 

Next, multiply equation (*) by     and (**) by     :    qs rs
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Equations (1) and (2) are the orthogonality conditions: 
If we use the fact that the modes are pair, then 
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MDOF Systems with viscous 
damping- general case 

Inserting these two into equations (1) and (2): 
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Where     ,     ,     are modal mass, stiffness and damping.  rm rk rc



FRF Characteristics (Viscous Damping) 

The response solution is: 
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We are seeking to a similar series expansion similar to the 
undamped case. 
To do this, we define a new vector {u}: 
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We write the equation of motion as: 
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FRF Characteristics (Viscous Damping) 

This is N equations and 2N unknowns. We add an identity 
Equation as: 
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Now, we combine these two equations to get: 
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Which cab be simplified to: 
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FRF Characteristics (Viscous Damping) 

Equation (3) is in a standard eigenvalue form. Assuming a  
trial solution in the form of   
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The orthogonality properties cab be stated as: 
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With the usual characteristics: 
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FRF Characteristics (Viscous Damping) 

Let’s express the forcing vector as: 
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Now using the previous series expansion: 
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And because the eigenvalues and vectors occur in complex  
conjugate pair: 

)(

}}{{}{

)(

}}{{}{
**

*

112 r
sia

P

sia

P

Xi

X

r

r

H

r
N

r rr

r

T

r

N





























FRF Characteristics (Viscous Damping) 

Now the receptance  frequency response function 
Resulting from a single force     and response parameter      
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Where: 
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